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Introducing the Limit Order Book

The limit order book (LOB) acts as an information store of traders future intentions [1].
The LOB consists of limit orders, each with a specified side, limit price, submission time
and size. The resulting high dimensional data structure is a challenge for theoretical
modelling and empirical estimation as well as, more practically, for trading.

The LOB is an area of high current interest for both academic modelers and practioners,
•Book resiliency
•Buy/sell intensity
•Dynamical behavior
• Shape
• Information content

•High-frequency trading
•Optimally executing large orders
•Hidden volume detection
• Short-term price prediction
•Market making

All these areas of research require the ability to rebuild the LOB. Existing models for
rebuilding the LOB are purely deterministic implementations of exchange rules. The
contribution of this work is to show that the rebuild process can be used to infer addi-
tional information which could be beneficially used in any of the above areas of research
and thus our approach is a probabilistic one.

L2 Structure in 3 Dimensions

The LOB can be rebuilt to the L2 view by applying exchange rules to the broadcast
data. The broadcast data consists of three dimensions - side (bid, ask), class (price,
size) and price level (m = 1, . . . ,M), which vary over time. In this data feed the K
orders at each price level have been aggregated to a single net volume and individual
orders are not visible. This aggregation represents an information loss.
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The L2 view of the LOB for the H11 contract of the e-mini S&P500 from CME GLOBEX on January 14th 2011 from

09:53:40 to 09:55:40 (UTC-5) at 100ms sampling frequency.

L3 Structure in 4 Dimensions

In the L3 view at each price level the component orders are visible, along with their
associated size, order in the queue and time of placement. Generating the L3 view
increases the dimensionality of the LOB by one to 4D with the extra dimension being
size level (l = 1, . . . , L) for orders.

There are five operations on the LOB; trade, order modification (price change), order
modification (size increasing), order modification (size decreasing) and order cancella-
tion.

The first three of these are deterministic
operations as the rules of the exchange
mean it is known which order has been
effected. The last two are stochastic
operations, as there is no way of know-
ing which order the operation has been
applied to. Instead conditional proba-
bilities for the operation must be found. Price
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AUDUSD H11 Future on CME GLOBEX. 24 Jan 2011, 10:00:00 (UTC−6)
L3 View of the LOB
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The L3 Book at a single price level
Schematics of a new order and an order being filled
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The L3 Book at a single price level
Schematic of an order modification
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Probabilistic Framework

The problem is formulated in discrete state space by applying the framework of a ho-
mogeneous Hidden Markov Model, where the relationship between the L2 and L3 states
is probabilistic p(xt|zt). xt is the observed variable (s.t. xt =

∑L
l=1 vt,l for order set

vt,l) and zt is the latent variable, where X = {x1, . . . , xT}, Z = {z1, . . . ,zT} where
zt = {zt,1, . . . , zt,K}. L3 is Markovian as p(zt|zt−1).

For parameter set Θ = {π,P,Φ} the joint probability distribution over latent and
observed variables is given by,

p(X,Z|Θ) = p(z1|π)

 T∏
t=2

p(zt|zt−1,P)

 T∏
t=1

p(xt|zt,Φ)

Frequentist Learning

Learning finds the state transition matrix P, the probability of transitioning between
hidden states. MLE is computationally intractable due to the size of the state space
so kernel density estimation is used to estimate P by P (vt|vt−1) ≈ Q(vt|vt−1,Ψ).
vt is the order size and Ψ is a set of five parameters which represent the structure
of the LOB Ψ = {d, α, β,∑Vside,

∑
Vl} (distance from mid price, fitted Gamma

distribution parameters and volume at given side/ price level).
Kernel density estimators of the joint distribution, p(vt, vt−1,Ψ) are normalized to get
the conditional distribution,

p(vt|vt−1,Ψ) =
p(vt, vt−1,Ψ)∑
vt p(vt, vt−1,Ψ)

=
p(vt, vt−1,Ψ)

p(vt−1,Ψ)

Bayesian Inference

At each t the most likely L3 structure zt given the observed L2 structure xt and Θ
needs to be found. Simple MAP inference is not viable as later vt may not be recon-
cilable with the zt chosen. To overcome this, we retain distributional information at
each time-step and not just the most probable state. Paths are killed off when later
information shows them to be wrong.

The forward algorithm is used to find the filtering distribution z∗t = argmax
zt

p(zt|x1:t),

allowing linear complexity wrt time K2T . Arithmetic underflow is avoided by using
the “soft-max trick” to re-scale probabilities. Q is defined as a K × T matrix of
unnormalized probabilities Q = {q1, . . . , qt−1} corresponding to p(zt|x1:t).

Alg. 1 Soft-Max Forward Algorithm.
p(Z|X,Θ) = SMF(X,P,Φ, π);

for t = 1 to T do
Et−1,k = log (Q) {Calculate the “energies”}

p(zt = k|x1:t−1) =
exp(Et−1,k)∑

k e
Et−1,k

{Normalize}

Et,k = log (Φik) + log
(∑

iPik × eEt−1,i
)

{Propagation}
Γ = argmax

k

(
Et,k

)
{Calculate scaling factor}

Et,k ← Et,k − Γ {Rescale}
qt = eEt,k {Access probability}
z∗t = argmax

k

(
qt,k
)
{MAP. Most likely state

of the LOB.}
end for
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 Example trajectory of paths through the lattice
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Simplified plot of LOB trajectories after a ten time

steps. Line width is proportional to p(zt|x1:t), such

that the line can only get thinner over time, unless

non-unique structures are merged. At each t LOB

structures which are consistent with the observations

are shown in green and the most likely of these z∗t is

shown in red.

Experimental Results

As the hidden state is never known, synthetic data is created by a generative model
allowing the true L3 and L2 structures to be seen. Monte Carlo simulations comparing
the true L3 state to the inferred L3 state z∗1:t find statistically significant improvements
over randomly generated L3 states, with R2 values of > 45%.

For the NYSE Liffe FTSE 100 future we
generate a moving average of the rate of
stochastic LOB updates (i.e. size reduc-
ing modifications) and a moving average of
the number of branches present in the (un-
pruned) lattice of possible LOB structures.
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 Branching versus modification rates. FTSE 100. 
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Applications

The informational advantage the L3 structure gives has many applications, for example,

•Hidden volume [2]. The L3 structure of the LOB would allow the existence of iceberg
orders to be probabilistically detected.

•VWAP tracking [3]. Volume participation algorithms systematically interact with the
LOB and in doing so leave “footprints”. Detection and prediction of such activity
would allow large trades to be “front run”.

•Market making for pro-rata futures [4]. The successful liquidity supplier in these secu-
rities will need to submit orders in such a way that it maximizes his matching-engine
allocation and this is conditional on the L3 structure.
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